A New Approach for Selecting a Constraint in Linear Programming Problems to Identify the Redundant Constraints.

¹DR. S.PAULRAJ, ²MRS. P.SUMATHI

Abstract — Linear programming (LP) is one of the most important techniques used in modeling and solving practical optimisation problems that arise in industry, commerce and management. It is well known that, for largest LP problems, only a relatively small percentage of constraints are binding at the optimal solution. In fact, large LP problems almost contain a significant number of redundant constraints and variables. Therefore it is worthwhile to devote some efforts in presolving for considerable reduction in the size of the problem. This paper presents a new approach for selecting a constraint in linear programming problems to identify the redundant constraints. The algorithm is coded by using a computer programming language C. The computational results are presented and analyzed in this paper.

----- 🌢 ------

Index Terms - linear programming, restrictive constraint, redundant constraints,

1 INTRODUCTION

Linear programming represents a mathematical model for solving numerous practical industrial problems such as the optimal allocation of resources. The general linear programming model with bounded variables can be stated as

LP: Max Z = CX
Subject to AX
$$\leq$$
 b, (1)
 $0 \leq X \leq U$

Where X is an n x 1 vector of variables. A is an m x n matrix $[a_{ij}]$ with 1 x n row vectors A_{i} , i = 1,2,3,...,m, b an m x 1 vector, C an 1 x n vector and 0 an n x 1 vector of zeros. U is an n x 1 vector.

Let $A_iX \le b_i$ be the i^{th} constraint of the system (1) and let $S = \{X \in \mathbb{R}^n / A_iX \le b_i, X \ge 0\}$ be the feasible region associated with system (1). Let $S_k = \{X \in \mathbb{R}^n / A_iX \le b_i, X \ge 0, i \ne k\}$ be the feasible region associated with the system of equations $A_iX \le b_i$, i = 1, 2, 3, ..., m, $i \ne k$.

The k^{th} constraint $A_k X \le b_k$, is redundant if and only if $S_k = S$ and necessary if and only if $S_k \ne S$. Many Researchers [1 - 2] and [4-17] have proposed different methods to identify the redundancies in linear programming problems. In 1989, Caron et. al [7] proposed a theorem to identify the redundant

E-mail: psumathi16@rediffmail.com

constraints, which states that the kth constraint $A_kX \le b_k$ is redundant if and only if the problem LP_k has an optimal solution X^{*} with $A_kX^* \le b_k$, where LP_k is given by

LP_k : maximize A_kX
Subject to A_iX
$$\leq$$
 b_i, i = 1,2,3,...,m, i \neq k
X > 0.

Ilya Ioslovich [11] suggested an approach to identify the redundant constraints in the system of equation (1) by using a constraint instead of using all the remaining (m-1) constraints. This constraint is said to be most restrictive constraint. In this approach first the most restrictive constraint $l = \arg\min_i Z_i$ selected from the constraint set.

Where Z_i is the optimal value of LP_i. Where LP_i is

LP_i: max
$$Z_i = CX$$

Subject to $A_iX \le b_i$ (2)
 $0 \le X \le U$

Then identified the constraints $A_k X \le b_k$, is redundant if $\alpha_k^l < b_k$ Where α_k^l is the optimal value of LP_k^l . Where LP_k^l is

LP_k^l: Maximize
$$\alpha_k^l = A_k X$$

Subject to A_iX \leq b₁ (3)
 $0 \leq X \leq U$

In the Ioslovich [11] approach the most restrictive constraint has been chosen by using the optimal values Z_{i_r} i = 1,2,3,...,m. Hence this approach consumes more number of computational efforts and time. To overcome this difficulty this paper suggests a new approach to select a restrictive constraint. Which is presented in the section 2. The section 3 illustrates the new approach with some numerical examples .The efficiency of the introduced approach is reported through various sizes of LP problems in the section 4. The section 5 draws the conclusion of the paper.

IJSER © 2012 http://www.ijser.org

¹Associate Professor of Mathematics, Department of Mathematics, Madras Institute of Technology Campus, Anna University Chennai, Chromepet, Chennai - 600 044, Tamil Nadu, India . E-mail: paulraj@annauniv.edu. ²Ph.D. Research Scholar, Anna University, Chennai.

2 PROPOSED APPROACH

In this section, a new approach is suggested to select the most restrictive constraint. The steps of the proposed approach are as follows. Let us consider the following problem

$$\max Z = \sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i$$
, i = 1,2,3,...,m

 $0 \le x_i \le u_i$, j = 1, 2, 3, ..., n

Step:1

Express each constraint with the following form by dividing each constraint by the corresponding right hand side value.

$$\sum_{j=1}^{n} \overline{a_{ij}} x_j \le 1, I = 1, 2, 3, \dots, m.$$

where $\overline{a_{ij}} = a_{ij} / b_i, (b_i > 0, \forall_i)$

Step:2

Compute $S_i = \sum_{i=1}^n |\overline{a_{ii}}|$ for each iEI, I= {1,2,3,...,m}

Step:3

Select a most restrictive constraint .Where $l = \arg \max_i (S_i)$

3 Numerical Examples

This section illustrates the proposed approach and also shows the advantages of the proposed approach by solving various size LP problems

Example 1:

Consider the following LPP Max Z = $40x_1 + 100x_2$ Subject to $10x_1 + 5x_2 \le 250$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $0 \le x_1 \le 25$ $0 \le x_2 \le 20$

Solution:

Here $C = (40 \ 100)$ (10.5)

$$A = \begin{bmatrix} 10 & 3 \\ 2 & 5 \\ 2 & 3 \end{bmatrix}$$
$$b^{T} = 250 \quad 100 \quad 90$$
$$U^{T} = (25 \quad 20)$$

Step 2:

 $S_1 = 0.06$ $S_2 = 0.07$ $S_3 = 0.06$ Step 3 $l = \arg \max_i(S_i), i = 1, 2, 3.$ l = 2Solving the problems LP_1^2 and LP_3^2 LP_1^2 : max $\alpha_1^2 = 10x_1 + 5x_2$ Subject to $2x_1 + 5x_2 \le 100$ $0 \le x_1 \le 25$ $0 \le x_2 \le 20$ and LP_3^2 : max $\alpha_3^2 = 2x_1 + 3x_2$ Subject to $2x_1 + 5x_2 \le 100$ $0 \le x_1 \le 25$ We have $\alpha_1^2 = 300$, $\alpha_3^2 = 80$ Since α_1^2 is not less than 250, α_3^2 is less than 90, constraint 3 is redundant.

Example 2:

Consider the following LPP Max $Z = 5x_1 + 6x_2 + 3x_3$ Subject to $5x_1 + 5x_2 + 3x_3 \le 50$ $2x_1 + 2x_2 + x_3 \le 40$ $7x_1 + 6x_2 + 3x_3 \le 30$ $5x_1 + 5x_2 + 5x_3 \le 35$ $12x_1 + 6x_2 + 9x_3 \le 90$ $4x_1 + 1x_2 + 2x_3 \le 20$ $0 \le x_1 \le 4.285$ $0 \le x_2 \le 5$ $0 \le x_3 \le 7$

Solution:

Here $C = (5 \ 6 \ 3)$

$$A = \begin{bmatrix} 5 & 5 & 3 \\ 2 & 2 & 1 \\ 7 & 6 & 3 \\ 5 & 5 & 5 \\ 12 & 6 & 9 \\ 4 & 1 & 2 \end{bmatrix}$$

b^T = (50 & 40 & 30 & 35 & 90 & 20)
U^T = (4.285 & 5 & 7)
c 2:
S₁ = 0.26
S₂ = 0.125
S₃ = 0.533
S₄ = 0.4285
S₅ = 0.3
S₆ = 0.35

Step

LISER © http://www.ijser.org International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 ISSN 2229-5518

Step 3 $l = \arg \max_i(S_i), i = 1, 2, 3, ..., 6$ l = 3

Solving the problems LP_1^3 , LP_2^3 , LP_4^3 , LP_5^3 and LP_6^3 .

We have $\alpha_1^3 = 28.50$ $\alpha_2^3 = 10.00$ $\alpha_4^3 = 42.50$

 $\alpha_5^3 = 78.43$

 $\alpha_6^3 = 19.14$

Since $\alpha_1^3 < b_1$, $\alpha_2^3 < b_2$, $\alpha_5^3 < b_5$, $\alpha_6^3 < b_6$, constraints 1,2,5,6 are redundant.

Example 3:

Consider the following LPP

 $Max Z = 61x_1 + 209x_2 + 324x_3 + 33x_4 + 276x_5 + 285x_6 + 250x_7 + 100x_8 + 12x_9 + 282x_{10}$

Subject to constraints

 $16x_1 + 25x_2 + 22x_3 + 4x_4 + 9x_5 + 8x_6 + 11x_7 + 29x_8 + 20x_9 + 22x_{10} \le 18$

 $5x_1 + 22x_2 + 15x_3 + 30x_4 + 24x_5 + 15x_6 + 14x_7 + 28x_8 + 31x_9 + 25x_{10} \le 53$

 $22x_1 + 17x_2 + 9x_3 + 32x_4 + 26x_5 + 20x_6 + 16x_7 + 16x_8 + 26x_9 + 24x_{10} \le 50$

 $\begin{array}{l} 14x_1+9x_2+32x_3+22x_4+30x_5+18x_6+18x_7+32x_8+15x_9+1x_{10}\leq 40\\ 32x_1+30x_2+10x_3+30x_4+7x_5+29x_6+15x_7+1x_8+19x_9+26x_{10}\leq 4\\ 12x_1+4x_2+30x_3+11x_4+23x_5+29x_6+8x_7+2x_8+23x_{10}\leq 31 \end{array}$

 $22x_1 + 23x_2 + 26x_3 + 13x_4 + 6x_5 + 13x_6 + 32x_7 + 11x_8 + 8x_9 + 5x_{10} \le 39$ $0 \le X \le U$, where $U^T = (0.125, 0.133, 0.4, 0.133, 0.571, 0.138, 0.266, 0.62, 0.21, 0.153)$

Solution:

 $C = (61\ 209\ 324\ 33\ 276\ 285\ 250\ 100\ 12\ 282)$

<i>A</i> =	16	25	22	4	9	8	11	29	20	22
	5	22	15	30	24	15	14	28	31	25
	22	17	9	32	26	20	16	16	26	24
	14	9	32	22	30	18	18	32	15	1
	32	30	10	30	7	29	15	1	19	26
	12	4	30	11	23	29	8	2	0	23
	22	23	26	13	6	13	32	11	8	5

 $b^{T} = (18 \ 53 \ 50 \ 40 \ 4 \ 31 \ 39)$

Step 2

 $\begin{array}{l} S_1 = 9.222\\ S_2 = 3.94\\ S_3 = 4.16\\ S_4 = 4.775\\ S_5 = 49.75\\ S_6 = 4.58\\ S_7 = 4.077 \end{array}$

 $l = \arg \max_i (S_i) = 5$

Solving the problems LP_1^5 , LP_2^5 , LP_3^5 , LP_4^5 , LP_6^5 and LP_7^5 ,

we have $\alpha_1^5 = 25.42$ $\alpha_2^5 = 28.95$ $\alpha_3^5 = 22.47$ $\alpha_4^5 = 33.33$ $\alpha_6^5 = 13.14$ $\alpha_7^7 = 15.61$

Since $\alpha_2^5 < b_2$, $\alpha_3^5 < b_3$, $\alpha_4^5 < b_4$, $\alpha_6^5 < b_6$, and $\alpha_7^5 < b_7$, constraints 2,3,4,6,7 are redundant.

4 Numerical Results

The comparative results of the two approaches for identifying the redundant constraint are presented in the following tables. The tables 1 and 2 show the comparison results of small-scale and large-scale problems. Here the number of multiplications and divisions are presented. The computational time is presented in table 1 and 2 are microseconds and milliseconds respectively. Both these approaches identify the same constraints as redundant. However, the proposed method takes very less computational effort and time compared to the Ioslovich approach [11] to identify the redundant constraints in linear programming problems.

TABLE 1: COMPARISON OF TWO METHODS (Small Scale Problems)

S. NO.	Size of the Prob- lem		Ioslov	ich	Proposed		
	No. of con- straints	No. of Va- riables	No. of Multipli- cations/ Divisions	Time (micro second s)	No. of multip- lica- tions/ divi- sions	Time (micro seconds)	
1	3	2	747	201	326	179	
2	3	2	815	286	326	187	
3	3	2	747	203	326	184	
4	3	3	2034	285	648	185	
5	3	3	1895	290	786	200	
6	3	4	4245	485	1360	230	
7	4	3	2682	306	972	231	
8	4	3	2681	295	1248	235	
9	4	5	107860	643	3795	336	
10	6	3	5082	460	2724	349	

IJSER © 2012 http://www.ijser.org

11	7	10	221226	8516	94146	3797	R
							[1]
							[2]
							[3]
							[4]
							[5]
							[6]

TABLE 2: COMPARISON OF TWO METHODS (Large Scale Problems)

S. NO	Size of the	Problem	Ioslo	wich	Pi	[10]	
	No. of con- straints	No. of Va- riables	No. of Multiplica- tions/ Divisions	Time (milli seconds)	No. of multiplica- tions/ divisions	Time (milli secor	[11] nds) [12]
1	50	500	7299004428	157638973	608250369	19837621	[13]
2	50	500	6965109510	146332149	593487546	18657901	[10]
3	50	500	6967810329	157647651	510430124	16727382	[14]
4	240	192	8011245923	930620218	774361273	2046104	
5	511	210	12577042510	1230620218	922863013	64187356	
							[15]

5 CONCLUSION

In this paper, a new approach is used to identify the redundant constraints and compare with Ioslovich procedure. The proposed method takes less time consumption and minimum number of computational efforts in comparison with the earlier method.

REFERENCES

-] E.D.Andersen and K.D.Andersen, "Presolving in linear programming", *Mathematical programming series B*, vol.71, no. 2, pp. 221-245, 1995.
- 2] M.L.Balinski, "An algorithm for finding all vertices of convex polyhedral sets", J.Soc. Indust Appl. Math, vol.9, no.1, pp.72-88, 1961.
- B] JE.Beasley, OR-Library, "Distributing test problems by electronic mail", *Journal of operational research society*, vol.41, (1990), pp 1069-1072.
- 4] J.C.G.Boot, "On trivial and binding constraints in programming problems", *Management science*, vol.8, no.4, pp. 419-441, 1962.
- 5] A.L.Brearley, G.Mitra and H.P.Williams, "Analysis of mathematical programming problems prior to applying the simplex algorithm", *Mathematical programming*, vol. 8, no.1, pp, 53-83, 1975.
- 6] A.Boneh,S.Boneh and R.J.Caron, "Constraint classification in mathematical programming", *Math. Programming*, vol. 61, no.1, pp. 61-73, 1993.
- [7] R.J.Caron, J.F.McDonald, and C.M.Ponic, "A degenerate extreme point strategy for the classification of linear constraints as redundant or necessary", *journal of optimisation theory and application*, vol.62, no.2, pp. 225-237, 1989.
- [8] T.Gal, "Weakly redundant constraints and their impact on post optimal analysis", *European journal of operational research*. vol.60, pp.315-326, 1979.
- [9] P.O.Gutman and I.Isolovich, "On the generalized wolf Problem: Preprocessing of nonnegative large scale linear programming problems with group constraints", Automation and remote control.vol.68, no.8, pp.1401-1409, 2007.
- [10] H.J.Greenberg, "Consistency redundancy and implied equalities in linear systems", *Ann.Math. artificial intelligence*, vol.17, pp.37-83, 1996.
 [11] Ilya Ioslovich, "Robust reduction of a class of large-scale linear pros) grams", *Siam journal of optimization*, vol.12, no.1, pp.262 – 282, 2001.
- [21] T.H.Mattheis, "An algorithm for determining irrelevant constraints and all vertices in systems of linear inequalities", *Operations Research.*, vol.21, pp. 247-260, 1973.
- [13] N.V.Stojkovic and P.S.Stanimirovic,"Two direct methods of linear programming", *European Journal of Operational Research*, vol.131,no.2, pp.417–439, 2001.
- [14] S.Paulraj, C.Chellappan and T.R.Natesan, "A heuristic approach for identification of redundant constraints in linear programming models", *International Journal of Computer Mathematics*, vol.83, no.8-9, pp.675–683, 2006.
- [15] S.Paulraj and P.Sumathi, "A Comparative Study of Redundant constraints Identification Methods in Linear Programming Problems", Mathematical Problems in Engineering, Hindawi Publishing Corporation, Article ID 723402, 2010.
- [16] J.Telgan, "Identifying redundant constraints and implicit equalities in system of linear constraints." *Management Science*, vol.29, no.10, pp.1209-1222, 1983.
- [17] G.L.Thompson, F.M.Tonge and S.Zionts, "Techniques for removing nonbinding constraints and extraneous variables from linear programming problems", *Management Science*, vol. 12, no.7, pp. 588-608, 1996.