A New Approach for Selecting a Constraint in Linear Programming Problems to Identify the Redundant Constraints.

${ }^{1}$ DR. S.PAULRAJ, ${ }^{2}$ MRS. P.SUMATHI

Abstract

Linear programming (LP) is one of the most important techniques used in modeling and solving practical optimisation problems that arise in industry, commerce and management. It is well known that, for largest LP problems, only a relatively small percentage of constraints are binding at the optimal solution. In fact, large LP problems almost contain a significant number of redundant constraints and variables. Therefore it is worthwhile to devote some efforts in presolving for considerable reduction in the size of the problem. This paper presents a new approach for selecting a constraint in linear programming problems to identify the redundant constraints. The algorithm is coded by using a computer programming language C . The computational results are presented and analyzed in this paper.

Index Terms - linear programming, restrictive constraint, redundant constraints,

1 Introduction

Linear programming represents a mathematical model for solving numerous practical industrial problems such as the optimal allocation of resources. The general linear programming model with bounded variables can be stated as

$$
\begin{array}{r}
\text { LP: } \operatorname{Max} \mathrm{Z}=\mathrm{CX} \\
\text { Subject to } \mathrm{AX} \leq \mathrm{b}, \tag{1}\\
0 \leq \mathrm{X} \leq \mathrm{U}
\end{array}
$$

Where X is an $\mathrm{n} \times 1$ vector of variables. A is an $\mathrm{m} \times \mathrm{n}$ matrix [$a_{i j}$] with $1 \times n$ row vectors $A_{i,}, i=1,2,3, \ldots, m, b$ an $m \times 1$ vector, C an $1 \times n$ vector and 0 an $n \times 1$ vector of zeros. U is an $n \times 1$ vector.

Let $A_{i} X \leq b_{i}$ be the $i^{\text {th }}$ constraint of the system (1) and let $S=\left\{X \in R^{n} / A_{i} X \leq b_{i}, X \geq 0\right\}$ be the feasible region associated with system (1). Let $S_{k}=\left\{X \in R^{n} / A_{i} X \leq b_{i}, X \geq 0, i \neq k\right\}$ be the feasible region associated with the system of equations $A_{i} X \leq b_{i}$, $\mathrm{i}=1,2,3, \ldots, \mathrm{~m}, \mathrm{i} \neq \mathrm{k}$.

The $k^{\text {th }}$ constraint $A_{k} X \leq b_{k}$, is redundant if and only if $S_{k}=S$ and necessary if and only if $S_{k} \neq S$. Many Researchers [1-2] and [4-17] have proposed different methods to identify the redundancies in linear programming problems. In 1989, Caron et. al [7] proposed a theorem to identify the redundant

[^0]constraints, which states that the $\mathrm{k}^{\text {th }}$ constraint $\mathrm{A}_{\mathrm{k}} \mathrm{X} \leq \mathrm{b}_{\mathrm{k}}$ is redundant if and only if the problem $L P_{k}$ has an optimal solution X^{*} with $A_{k} X^{*} \leq b_{k}$, where $L P_{k}$ is given by
\[

$$
\begin{aligned}
& L P_{k}: \text { maximize } A_{k} X \\
& \text { Subject to } A_{i} X \leq b_{i}, i=1,2,3, \ldots, m, i \neq k \\
& \qquad X \geq 0 .
\end{aligned}
$$
\]

Ilya Ioslovich [11] suggested an approach to identify the redundant constraints in the system of equation (1) by using a constraint instead of using all the remaining ($\mathrm{m}-1$) constraints. This constraint is said to be most restrictive constraint. In this approach first the most restrictive constraint $l=\arg \min _{i} Z_{i}$ selected from the constraint set.

Where Z_{i} is the optimal value of $L P_{i}$. Where $L P_{i}$ is

$$
\begin{align*}
& \mathrm{LP}_{\mathrm{i}}: \max \mathrm{Z}_{\mathrm{i}}=\mathrm{CX} \\
& \text { Subject to } \mathrm{Ai}_{\mathrm{i}} \mathrm{X} \leq \mathrm{b}_{\mathrm{i}} \tag{2}\\
& 0 \leq \mathrm{X} \leq \mathrm{U}
\end{align*}
$$

Then identified the constraints $A_{k} X \leq b_{k}$, is redundant if $\alpha_{k}^{l}<b_{k}$ Where α_{k}^{l} is the optimal value of $L P_{k}{ }^{1}$. Where $L P_{k}{ }^{1}$ is

$$
\begin{gather*}
\text { LP } \mathrm{l}_{\mathrm{k}} \text { Maximize } \alpha_{k}^{l}=\mathrm{A}_{\mathrm{k}} \mathrm{X} \\
\text { Subject to } \mathrm{A}_{\mathrm{I}} \mathrm{X} \leq \mathrm{b}_{1} \tag{3}\\
0 \leq \mathrm{X} \leq \mathrm{U}
\end{gather*}
$$

In the Ioslovich [11] approach the most restrictive constraint has been chosen by using the optimal values $Z_{i,}, i=1,2,3, \ldots, m$. Hence this approach consumes more number of computational efforts and time. To overcome this difficulty this paper suggests a new approach to select a restrictive constraint. Which is presented in the section 2 . The section 3 illustrates the new approach with some numerical examples.The efficiency of the introduced approach is reported through various sizes of LP problems in the section 4 . The section 5 draws the conclusion of the paper.
IJSER © 2012
http://www.ijser.org

2 PROPOSED APPROACH

In this section, a new approach is suggested to select the most restrictive constraint. The steps of the proposed approach are as follows.
Let us consider the following problem

$$
\max Z=\sum_{j=1}^{n} c_{j} x_{j}
$$

subject to $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \mathrm{i}=1,2,3, \ldots, \mathrm{~m}$

$$
0 \leq x_{j} \leq u_{j}, j=1,2,3, \ldots, n
$$

Step:1

Express each constraint with the following form by dividing each constraint by the corresponding right hand side value.

$$
\sum_{j=1}^{n} \overline{a_{\imath \jmath}} x_{j} \leq 1, \mathrm{I}=1,2,3, \ldots, \mathrm{~m}
$$

where $\overline{a_{1 \jmath}}=a_{i j} / b_{i},\left(b_{i}>0, \forall_{i}\right)$

Step:2

Compute $S_{i}=\sum_{j=1}^{n}\left|\overline{a_{\imath \jmath}}\right|$ for each $\mathrm{i} \subset \mathrm{I}, \mathrm{I}=\{1,2,3, \ldots, \mathrm{~m}\}$
Step:3
Select a most restrictive constraint.Where $l=\arg \max _{i}\left(S_{i}\right)$

3 Numerical Examples

This section illustrates the proposed approach and also shows the advantages of the proposed approach by solving various size LP problems

Example 1:

Consider the following LPP

$$
\begin{gathered}
\text { Max } Z=40 x_{1}+100 x_{2} \\
\text { Subject to } \\
10 x_{1}+5 x_{2} \leq 250 \\
2 x_{1}+5 x_{2} \leq 100 \\
2 x_{1}+3 x_{2} \leq 90 \\
0 \leq x_{1} \leq 25 \\
0 \leq x_{2} \leq 20
\end{gathered}
$$

Solution:

$$
\text { Here } C=\left(\begin{array}{ll}
40 & 100
\end{array}\right)
$$

$$
\begin{array}{rl}
A & =\left(\begin{array}{ll}
10 & 5 \\
2 & 5 \\
2 & 3
\end{array}\right) \\
b^{T} & =250 \\
250 & 100 \\
U^{T} & =\left(\begin{array}{ll}
25 & 20
\end{array}\right)
\end{array}
$$

Step 2:

$$
\begin{aligned}
& S_{1}=0.06 \\
& S_{2}=0.07 \\
& S_{3}=0.06
\end{aligned}
$$

Step 3

$$
l=\arg \max _{i}\left(S_{i}\right), \mathrm{i}=1,2,3
$$

$l=2$
Solving the problems LP_{1}^{2} and LP_{3}^{2}
$\mathrm{LP}_{1}^{2}: \max \alpha_{1}^{2}=10 \mathrm{x}_{1}+5 \mathrm{x}_{2}$
Subject to
$2 x_{1}+5 x_{2} \leq 100$
$0 \leq \mathrm{x}_{1} \leq 25$
$0 \leq \mathrm{x}_{2} \leq 20$
and $\mathrm{LP}_{3}^{2}: \max \alpha_{3}^{2}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}$
Subject to

$$
\begin{gathered}
2 x_{1}+5 x_{2} \leq 100 \\
0 \leq x_{1} \leq 25
\end{gathered}
$$

$0 \leq x_{2} \leq 20$
We have $\alpha_{1}^{2}=300, \quad \alpha_{3}^{2}=80$
Since α_{1}^{2} is not less than $250, \alpha_{3}^{2}$ is less than 90 , constraint 3 is redundant.

Example 2:

Consider the following LPP

$$
\operatorname{Max} Z=5 x_{1}+6 x_{2}+3 x_{3}
$$

Subject to

$$
\begin{array}{r}
5 x_{1}+5 x_{2}+3 x_{3} \leq 50 \\
2 x_{1}+2 x_{2}+x_{3} \leq 40 \\
7 x_{1}+6 x_{2}+3 x_{3} \leq 30 \\
5 x_{1}+5 x_{2}+5 x_{3} \leq 35 \\
12 x_{1}+6 x_{2}+9 x_{3} \leq 90 \\
4 x_{1}+1 x_{2}+2 x_{3} \leq 20 \\
0 \leq x_{1} \leq 4.285 \\
0 \leq x_{2} \leq 5 \\
0 \leq x_{3} \leq 7
\end{array}
$$

Solution:

Here $C=\left(\begin{array}{lll}5 & 6 & 3\end{array}\right)$

$$
A=\left(\begin{array}{lll}
5 & 5 & 3 \\
2 & 2 & 1 \\
7 & 6 & 3 \\
5 & 5 & 5 \\
12 & 6 & 9 \\
4 & 1 & 2
\end{array}\right)
$$

$$
b^{\mathrm{T}}=\left(\begin{array}{llllll}
50 & 40 & 30 & 35 & 90 & 20
\end{array}\right)
$$

$$
\mathrm{U}^{\mathrm{T}}=\left(\begin{array}{lll}
4.285 & 5 & 7
\end{array}\right)
$$

Step 2:

$$
\begin{aligned}
& S_{1}=0.26 \\
& S_{2}=0.125 \\
& S_{3}=0.533 \\
& S_{4}=0.4285 \\
& S_{5}=0.3 \\
& S_{6}=0.35
\end{aligned}
$$

Step 3

$$
l=\arg \max _{i}\left(S_{i}\right), \mathrm{i}=1,2,3, \ldots, 6
$$

$$
l=3
$$

Solving the problems $\mathrm{LP}_{1}^{3}, \mathrm{LP}_{2}^{3}, \mathrm{LP}_{4}^{3}, \mathrm{LP}_{5}^{3}$ and LP_{6}^{3}.
We have $\alpha_{1}^{3}=28.50$

$$
\begin{aligned}
& \alpha_{2}^{3}=10.00 \\
& \alpha_{4}^{3}=42.50 \\
& \alpha_{5}^{3}=78.43 \\
& \alpha_{6}^{3}=19.14
\end{aligned}
$$

Since $\alpha_{1}^{3}<\mathrm{b}_{1}, \alpha_{2}^{3}<\mathrm{b}_{2} \alpha_{5}^{3}<\mathrm{b}_{5}, \alpha_{6}^{3}<\mathrm{b}_{6}$,constraints 1,2,5,6 are redundant.

Example 3:

Consider the following LPP
Max $Z=61 x_{1}+209 x_{2}+324 x_{3}+33 x_{4}+276 x_{5}+285 x_{6}+250 x_{7}+$ $100 x_{8}+12 x_{9}+282 x_{10}$
Subject to constraints
$16 x_{1}+25 x_{2}+22 x_{3}+4 x_{4}+9 x_{5}+8 x_{6}+11 x_{7}+29 x_{8}+20 x_{9}+22 x_{10} \leq 18$
$5 x_{1}+22 x_{2}+15 x_{3}+30 x_{4}+24 x_{5}+15 x_{6}+14 x_{7}+28 x_{8}+31 x_{9}+25 x_{10} \leq$ 53
$22 x_{1}+17 x_{2}+9 x_{3}+32 x_{4}+26 x_{5}+20 x_{6}+16 x_{7}+16 x_{8}+26 x_{9}+24 x_{10} \leq$ 50
$14 x_{1}+9 x_{2}+32 x_{3}+22 x_{4}+30 x_{5}+18 x_{6}+18 x_{7}+32 x_{8}+15 x_{9}+1 x_{10} \leq 40$
$32 x_{1}+30 x_{2}+10 x_{3}+30 x_{4}+7 x_{5}+29 x_{6}+15 x_{7}+1 x_{8}+19 x_{9}+26 x_{10} \leq 4$
$12 x_{1}+4 x_{2}+30 x_{3}+11 x_{4}+23 x_{5}+29 x_{6}+8 x_{7}+2 x_{8}+23 x_{10} \leq 31$
$22 x_{1}+23 x_{2}+26 x_{3}+13 x_{4}+6 x_{5}+13 x_{6}+32 x_{7}+11 x_{8}+8 x_{9}+5 x_{10} \leq 39$ $0 \leq \mathrm{X} \leq \mathrm{U}$, where $\mathrm{U}^{\mathrm{T}}=(0.125,0.133,0.4,0.133,0.571,0.138$, $0.266,0.62,0.21,0.153$)

Solution:

$C=(612093243327628525010012$ 282)
$A=\left[\begin{array}{cccccccccc}16 & 25 & 22 & 4 & 9 & 8 & 11 & 29 & 20 & 22 \\ 5 & 22 & 15 & 30 & 24 & 15 & 14 & 28 & 31 & 25 \\ 22 & 17 & 9 & 32 & 26 & 20 & 16 & 16 & 26 & 24 \\ 14 & 9 & 32 & 22 & 30 & 18 & 18 & 32 & 15 & 1 \\ 32 & 30 & 10 & 30 & 7 & 29 & 15 & 1 & 19 & 26 \\ 12 & 4 & 30 & 11 & 23 & 29 & 8 & 2 & 0 & 23 \\ 22 & 23 & 26 & 13 & 6 & 13 & 32 & 11 & 8 & 5\end{array}\right]$
$b^{T}=\left(\begin{array}{lllllll}18 & 53 & 50 & 40 & 4 & 31 & 39\end{array}\right)$
Step 2

$$
\begin{aligned}
& \mathrm{S}_{1}=9.222 \\
& \mathrm{~S}_{2}=3.94 \\
& \mathrm{~S}_{3}=4.16 \\
& \mathrm{~S}_{4}=4.775 \\
& \mathrm{~S}_{5}=49.75 \\
& \mathrm{~S}_{6}=4.58 \\
& \mathrm{~S}_{7}=4.077
\end{aligned}
$$

Step 3

$$
l=\arg \max _{i}\left(S_{i}\right)=5
$$

Solving the problems $\mathrm{LP}_{1}^{5}, \mathrm{LP}_{2}^{5}, \mathrm{LP}_{3}^{5}, \mathrm{LP}_{4}^{5}, \mathrm{LP}_{6}^{5}$ and LP_{7}^{5}, we have $\alpha_{1}^{5}=25.42$

$$
\begin{aligned}
& \alpha_{2}^{5}=28.95 \\
& \alpha_{3}^{5}=22.47 \\
& \alpha_{4}^{5}=33.33 \\
& \alpha_{6}^{5}=13.14 \\
& \alpha_{7}^{5}=15.61
\end{aligned}
$$

Since $\alpha_{2}^{5}<\mathrm{b}_{2}, \alpha_{3}^{5}<\mathrm{b}_{3}, \alpha_{4}^{5}<\mathrm{b}_{4}, \alpha_{6}^{5}<\mathrm{b}_{6}$, and $\alpha_{7}^{5}<\mathrm{b}_{7}$, constraints $2,3,4,6,7$ are redundant.

4 Numerical Results

The comparative results of the two approaches for identifying the redundant constraint are presented in the following tables. The tables 1 and 2 show the comparison results of small-scale and large-scale problems. Here the number of multiplications and divisions are presented. The computational time is presented in table 1 and 2 are microseconds and milliseconds respectively. Both these approaches identify the same constraints as redundant. However, the proposed method takes very less computational effort and time compared to the Ioslovich approach [11] to identify the redundant constraints in linear programming problems.

TABLE 1: COMPARISON OF TWO METHODS (Small Scale Problems)

S. NO.	Size of the Problem		Ioslovich		Proposed	
	No. of constraints	No. of Variables	No. of Multiplications/ Divisions	Time (micro second s)	No. of multip-lications/ divisions	Time (micro seconds)
1	3	2	747	201	326	179
2	3	2	815	286	326	187
3	3	2	747	203	326	184
4	3	3	2034	285	648	185
5	3	3	1895	290	786	200
6	3	4	4245	485	1360	230
7	4	3	2682	306	972	231
8	4	3	2681	295	1248	235
9	4	5	107860	643	3795	336
10	6	3	5082	460	2724	349

7] R.J.Caron, J.F.McDonald, and C.M.Ponic, "A degenerate extreme point strategy for the classification of linear constraints as redundant or necessary", journal of optimisation theory and application, vol.62, no.2, pp. 225-237, 1989.
[8] T.Gal, "Weakly redundant constraints and their impact on post optimal analysis", European journal of operational research. vol.60, pp.315326, 1979.

TABLE 2: COMPARISON OF TWO METHODS (Large Scale Problems)
[9] P.O.Gutman and I.Isolovich, "On the generalized wolf Problem: Preprocessing of nonnegative large scale linear programming problems with group constraints", Automation and remote control.vol.68, no.8, pp.1401-1409, 2007.

$\begin{gathered} \text { S. } \\ \text { NO } \end{gathered}$	Size of the Problem		Ioslovich		Proposed [10]	
	No. of constraints	No. of Variables	No. of Multiplications/ Divisions	$\begin{gathered} \text { Time } \\ \text { (milli } \\ \text { seconds) } \end{gathered}$	No. of multiplications/ divisions	Time [11] (milli seconds)
1	50	500	7299004428	157638973	608250369	19837621
2	50	500	6965109510	146332149	593487546	18657901
3	50	500	6967810329	157647651	510430124	16727382
4	240	192	8011245923	930620218	774361273	2046104
5	511	210	12577042510	1230620218	922863013	64187356
						[15]

H.J.Geenberg, "Consistency redundancy and implied equalities in linear systems", Ann.Math. artificial intelligence, vol.17, pp.37-83, 1996.] Ilya Ioslovich, "Robust reduction of a class of large-scale linear programs", Siam journal of optimization, vol.12,no.1, pp.262-282, 2001.
[12] T.H.Mattheis, "An algorithm for determining irrelevant constraints and all vertices in systems of linear inequalities", Operations Research., vol.21, pp. 247-260, 1973.
[13] N.V.Stojkovic and P.S.Stanimirovic,"Two direct methods of linear programming", European Journal of Operational Research, vol.131,no.2, pp.417-439, 2001.
[14] S.Paulraj, C.Chellappan and T.R.Natesan, "A heuristic approach for identification of redundant constraints in linear programming models", International Journal of Computer Mathematics, vol.83, no.8-9, pp.675-683, 2006.
[15] S.Paulraj and P.Sumathi, "A Comparative Study of Redundant constraints Identification Methods in Linear Programming Problems", Mathematical Problems in Engineering, Hindawi Publishing Corporation, Article ID 723402, 2010.

5 Conclusion

In this paper, a new approach is used to identify the redundant constraints and compare with Ioslovich procedure. The proposed method takes less time consumption and minimum number of computational efforts in comparison with the earlier method.
[16] J.Telgan, "Identifying redundant constraints and implicit equalities in system of linear constraints." Management Science, vol.29, no.10, pp.1209-1222, 1983.
[17] G.L.Thompson, F.M.Tonge and S.Zionts, "Techniques for removing nonbinding constraints and extraneous variables from linear programming problems", Management Science, vol. 12, no.7, pp. 588-608, 1996.

[^0]: ${ }^{1}$ Associate Professor of Mathematics, Department of Mathematics, Madras Institute of Technology Campus, Anna University Chennai, Chromepet, Chennai - 600044 , Tamil Nadu, India . E-mail: paulraj@annauniv.edu. ${ }^{2}$ Ph.D. Research Scholar, Anna University, Chennai.
 E-mail: psumathi16@rediffmail.com

